	报告表编号	
		_年
编号:		

建设项目环境影响报告表

项目名称: 中山市耀成水泥制品厂年产6万平方米水泥砖新建项目

建设单位(盖章): 中山市耀成水泥制品厂

编制日期: 2020年10月

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- (1)项目名称一指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。
 - (2)建设地点--指项目所在地的名称,公路、铁路应填写起止地点。
 - (3) 行业类别一按国标填写。
 - (4) 总投资--指项目投资总额。
- (5)主要环境保护目标一指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和厂界距离等。
- (6)结论与建议一给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
 - (7)预审意见一由行业主管部门填写答复意见,无主管部门项目,可不填。
 - (8) 审批意见一由负责审批该项目的环境保护行政主管部门批复。

目录

建设项	目基本情况	1
建设项	目所在地自然环境简况	12
环境质	量状况	15
评价适用	用标准	19
建设项	目工程分析	20
项目主	要污染物产生及预计排放情况	25
环境影响	响分析	26
建设项	目拟采取的防治措施及预期治理效果	37
结论与	建议	40
附图 1	项目地理位置图	46
附图 2	项目平面布置图	47
附图3	建设项目四至图	48
附图4	中山市规划一张图	49
附图 5	项目水环境功能区划图	50
附图 6	项目大气功能区划图	51
附图 7	项目声功能区划图	52
附图8	项目大气评价范围	53
附图 9	开发区报批前公示截图	54

建设项目基本情况

项目名称		中	山市耀成水	泥制品厂	年产6万平方	万米水泥砖新	建项目		
建设单位				中山市	耀成水泥制品厂				
法人代表	程恒				联系人	程恒			
通讯地址			中山市人	· 炬开发区	小引村玉泉區	路 20 号旁之三	<u>=</u>		
联系电话	13322903735			传真	/	邮政编码	528400		
建设地点	中山市火炬开发区			[小引村玉泉路 20 号旁之三					
立项审批	部门 /		/		批准文号	/			
建设性质	新建			行业类别 及代码	C3021 7	k泥制品制造			
用地面积 (平方米)	10000			建筑面积 (平方米)		10000			
总投资 (万元)	100		其中:环保投资(万 元)		20	环保投资占总 投资比例 20%			
评价经费 (万元)	/		投产日期			2020年11月			

工程内容及规模:

一、环评类别判定说明

序号	行业类别	产品产能	工艺	对名录的条款	敏感区	类别
1	非金属矿物制品业	水泥砖 60000 平方米/年	配料、搅拌	十九 (50)	无	表

二、 相符性分析

序号	规划/政策文件	涉及条款	本项目	是否符合
1	产业结构调整指导目录 (2019 年本)	淘汰类和限制类	项目不属于其中的 淘汰类和限制类, 为允许建设项目	是
2	市场准入负面清单(2019年版)	禁止准入类	不属于	是
3	《中山市涉挥发性有机物项目环保准入管理规定》(中环规字[2017]3号)	重点管理行业	不属于	是
4	《中山市差别化环保准入促进区域协调发展实施细则》 (中环规字〔2020〕1号)	控制引导污染较重行 业有序发展	本项目水泥制品制 造,不属于	是
5	产业发展与转移指导目录(2018 年本)	引导逐步调整退出的 产业和引导不再承接 的产业	不属于	是

三、 编制依据

- (1) 《中华人民共和国环境保护法》(2014年4月24日修订,2015年01月01日 实施);
 - (2) 《中华人民共和国环境影响评价法》(2018年12月29日修正版);
 - (3) 《中华人民共和国水污染防治法》(2017年6月修正,2018年1月1日起施行);
 - (4) 《中华人民共和国大气污染防治法》(2018年修订,2018年10月26日起施行);
 - (5) 《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订);
 - (6) 《中华人民共和国环境噪声污染防治法》(2018年12月29日起施行);
 - (7) 《中华人民共和国环境土壤污染防治法》(2019年1月1日起施行);
 - (8) 《中山市差别化环保准入促进区域协调发展实施细则》(中环规字〔2020〕1 号);
 - (9) 《中山市涉挥发性有机物项目环保准入管理规定》(中环规字[2017]3号);
 - (10)《中山市环境空气质量功能区划(2020修订)》;
 - (11)《中山市水功能区管理办法》(中府[2008]96号);
 - (12) 《中山市声环境功能区划方案》(中环[2018]87号);
 - (13) 《环境影响评价技术导则 总纲》(HJ2.1-2016);
 - (14) 《环境影响评价技术导则—大气环境》(HJ 2.2-2018);
 - (15) 《环境影响评价技术导则—地表水环境》(HJ 2.3-2018);
 - (16) 《环境影响评价技术导则—声环境》(HJ 2.4-2009);
 - (17) 《建设项目环境风险评价技术导则》(HJ 169-2018);
 - (18) 《中山市水环境保护条例》(2016年6月1日起施行)。

四、环境要素的评价等级判定及评价范围

- 1、大气环境评价等级
- (1) 评价工作分级方法

按照《环境影响评价技术导则-大气环境》(HJ2.2-2018)的有关规定,根据项目的污染源初步调查结果,分别计算项目排放主要污染物的最大地面空气质量浓度占标率 P_i (第 i 个污染物),及第 i 个污染物的地面空气质量浓度达标准限值 10%时所对应的最远距离 $D_{10\%}$ 。其中 P_i 定义为:

$$Pi = \frac{C_i}{C_{0i}} \times 100\%$$

式中:

 P_i — 第 i 个污染物的最大地面浓度占标率, %;

 C_i ——采用估算模式计算出的第i个污染物的最大地面浓度, μ g/m³;

 C_0 ——第i个污染物的环境空气质量标准, μ g/ m^3 。

表 1 评价工作等级判据

评价工作等级	评价工作等级判据
一级	P _{max} ≥10%
二级	1%≤P _{max} <10%
三级	P _{max} <1%

同一项目有多个污染源(两个及以上)时,则按各污染源分别确定评价等级,并取评价等级最高者作为项目的评价等级。

(2) 评价因子及评价标准

表 2 评价因子质量标准

评价因	平均时段	标准值/ (μg/m ³)	标准来源
TSP	1 小时均 值	900	《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单
PM ₁₀	1 小时均 值	450	《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单

注: TSP 日平均质量浓度限值为 $300\mu g/m^3$,按 3 倍折算为 1h 平均浓度限值,即 $900\mu g/m^3$; PM_{10} 日平均质量浓度限值为 $150\mu g/m^3$,按 3 倍折算为 1h 平均浓度限值,即 $450\mu g/m^3$ 。

(3) 污染源参数

估算模式项目排放源参数如下所示。

表 3 核算面源源强一览表

	编号	名称	面源起点	(坐标/m	面源海拔	面源 长度	面源宽度	与北向 夹角/°		年排 放数	排放	污染物排 放速率/ (kg/h)
			X	Y	高度 /m	/m	/m	光用/*	放高 度/m	/ h	工况	TSP
		堆存、装卸过程 产生的粉尘						15	2	2000		0.005
	M1	车辆运输扬尘	113.499988	22.558175	/	143	70	15	2	100	正常	0.013
		投料及搅拌过 程产生的粉尘						15	2	1500	排放	0.0037
		搅拌机呼吸逸 出粉尘						15	2	2000		0.027

15 2 0.0107

表 4 核算点源源强一览表

编号	名称	排气筒 中心坐		排气 筒底 部海	排气 筒高 度/m	排气的出	烟气 流速 /(m/s)	烟气 温度 /°C	年排放 小时 数/h	排放 工况	污染物	排放 速率 /(kg/h)
		X	Y	度/m		径/m						
G1	储罐顶 部呼吸 孔粉尘	113.499988	22.558175	4	15	0.4	6.63	25	2000	正常 排放	PM ₁₀	0.0011

(4) 估算模型参数

估算模型参数见下表。

表 5 估算模型参数

参	取值	
城市/农村选项	城市/农村	城市
纵印/农们延坝	人口数 (城市选项时)	300万
最高环境	竟温度/℃	38.7
最低环境	竟温度/℃	1.9
土地利	月用类型	城市
区域造	是度条件	潮湿
是否考虑地形	考虑地形	否
走百	地形数据分辨率	/
	考虑岸线熏烟	否
是否考虑海岸线熏烟	海岸线距离/m	/
	海岸线方向/°	/

(5) 估算模型计算结果

项目污染源估算模式结果见下表。

表 6 估算模型计算结果表

W I I F I F A A A					
	G1 (PM		M_{10}) M1 (TSP)		
下风向距离/m	预测质量浓度/ (μg/m³)	占标率/%	预测质量浓度/ (μg/m³)	占标率/%	
10	0.000082	0.02	0.034904	3.88	
25	0.000141	0.03	0.036853	4.09	
50	0.000094	0.02	0.039968	4.44	
74	0.00008	0.02	0.041369	4.60	
75	0.000055	0.01	0.041279	4.59	
100	0.000046	0.01	0.021644	2.40	
125	0.000037	0.01	0.015257	1.70	
150	0.000033	0.01	0.011779	1.31	

0.00003	0.01	0.009489	1.05
0.000028	0.01	0.007873	0.87
0.000019	0	0.004498	0.50
0.000014	0	0.003031	0.34
0.00001	0	0.002234	0.25
0.000008	0	0.00174	0.19
0.000007	0	0.00141	0.14
0.000006	0	0.001175	0.13
0.000005	0	0.001	0.11
0.000004	0	0.000866	0.10
0.000002	0	0.0005	0.06
0.000002	0	0.000337	0.04
0.000001	0	0.000248	0.03
0.000141	0.03	0.03797	4.60
0		0	
	0.000028 0.000019 0.000014 0.000008 0.000007 0.000006 0.000005 0.000004 0.000002 0.000001 0.000141	0.000028 0.01 0.000019 0 0.000014 0 0.000008 0 0.000007 0 0.000006 0 0.000005 0 0.000004 0 0.000002 0 0.000001 0 0.0000141 0.03	0.000028 0.01 0.007873 0.000019 0 0.004498 0.000014 0 0.003031 0.000008 0 0.00174 0.000007 0 0.00141 0.000006 0 0.001175 0.000005 0 0.001 0.000004 0 0.000866 0.000002 0 0.000337 0.000001 0 0.000248 0.000141 0.03 0.03797

根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)的判定方法,正常工况下,本项目主要废气污染物的排放量均较小,各污染因子最大地面浓度占标率为 4.22%,因此,确定大气环境影响评价等级定为二级。不进行进一步预测与评价,只对污染物排放量进行核算。

2、地表水环境评价等级

本项目位于火炬区污水处理厂纳污范围内,生活污水经三级化粪池处理后,经市政污水管道排入火炬区污水处理厂处理,最终达标排放到八公里河,项目不直接对外排放。根据《环境影响评价技术导则-地表水环境》(HJ 2.3-2018),本项目属于间接排放项目,地表水环境影响评价等级为三级 B。

3、声环境评价等级

按《环境影响评价技术导则-声环境》(HJ2.4-2009)中的规定,"5.2.3 建设项目所处的声环境功能区为 GB3096 规定的 3 类地区,或建设项目建设前后评价范围内敏感目标噪声级增高量在 3dB(A)以下(不含 3dB(A)),且受影响人口数量变化不大时,按三级评价"。

根据《中山市声环境功能区划方案》(中环[2018]87号)的规定,本项目所在区域所处声环境功能区为3类区,因此,本项目声环境影响评价工作等级为三级。

4、地下水环境评价等级

根据《环境影响评价技术导则 地下水环境》(HJ610-2016)第 4.1 条的规定, 地下

水环境影响评价根据建设项目对地下水环境影响的程度,结合《建设项目环境影响评价 分类管理名录》,将建设项目分为四类,I类、II类、III类建设项目的地下水环境影响评 价按导则要求进行,IV类建设项目不开展地下水影响评价。

本项目为地下水导则附录 A 中的"J 非金属矿采选及制品制造-60 砼结构构件制造、商品混凝土加工",地下水环境影响评价项目类别为IV类,可不开展地下水影响评价。

5、生态环境评价等级

根据《环境影响评价技术导则 生态影响》(HJ/T19-2011)的有关规定,依据影响 区域的生态敏感性和评价项目的工程占地(含水域)范围,包括永久占地和临时占地,将生态影响评价工作等级划分为一级、二级和三级,如下表所示。

	工程占地(含水域)范围			
影响区域生态敏感性	面积≥20km²	面积 2~20 km²	面积≤2 km²	
	或长度≥100km	或长度 50~100km	或长度≤50km	
特殊生态敏感区	一级	一级	一级	
重要生态敏感区	一级	二级	三级	
一般区域	二级	三级	三级	

表 7 生态环境影响评价工作等级划分表

本项目工程占地面积小于 2km², 项目区不涉及各类特殊生态敏感区和重要生态敏感区, 为一般区域, 依据《环境影响评价技术导则 生态影响》(HJ19-2011)的评价分级原则, 本次生态环境评价等级确定为三级。

6、土壤环境

本项目行业类别为 C3021 水泥制品制造;根据土壤环境导则附录 A-土壤环境影响评价项目类别内容中可知,本项目属于"其他行业--全部",为IV类项目,因此,本项目可不展开土壤环境影响评价工作。

7、环境风险评价

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 B、《危险化学品重大 危险源辨识》(GB18218-2018)等内容,项目所用原料、生产产品、生产工艺均不涉及风 险物质,无需进行环境风险评价。

77 7 7 700 700 700 700 700 700 700 700						
环境要素	判定依据	评价等级	评价范围			
大气	根据"建设项目基本情况-环境要素的评价等级判定"章节,项目评价因子 TSP 占标率为 4.22%,属于导则中的 1%< Pmax < 10%.	二级	以项目为中心、边长 5km 的 矩形			
地表水	本项目不产生废水,生活污水采用化粪池处理后经市政污水管道进入火炬区污水处理厂,属间接排放。	三级 B	满足可依托处理设施环境可 行性分析的要求;涉及环境 风险的,应覆盖涉及地表水			

表 8 各环境要素的评价等级及评价范围一览表

			环境风险影响范围所及的水 环境保护保护目标水域
声环境	①建设项目所处的声功能区为3类区; ②评价范围内敏感目标噪声级增高量在 3dB(A)以下(不含 3dB(A)),且受影响人 口数量变化不大时。	三级	厂界外 200m 范围内
地下水	项目环评类别为报告表,属于《环境影响评价技术导则-地下水影响》(HJ 610-2016)中的IV类建设项目,不需要开展地下水环境影响评价。	/	/
生态环境	①工程占地面积<2km²; ②项目所在区域是一般区域。	三级	不进行生态评价
土壤	项目属于《环境影响评价技术导则-土壤环境(试行)》(HJ 964-2018)中的IV类建设项目,可不开展土壤环境影响评价。	/	/
环境风险	不涉及风险物质	1	/

五、 项目建设内容

1、基本信息

中山市耀成水泥制品厂建于中山市火炬开发区小引村玉泉路 20 号旁之三,中心坐标为北纬 22°33′29.32″; 东经 113°30′00.35″。项目总投资 100 万元,环保投资额为 20 万元,用地面积约 10000m²,主要从事水泥砖的生产。项目年产水泥砖 6 万平方米(约 1200 万块)。项目选址位置西面为中山入谷金属有限公司,东面及北面为空地,隔路西南面为中山宇宙精密金属加工有限公司,隔路南面为中山联合光电科技有限公司。项目地理位置情况详见附图 1,厂区平面布置情况详见附图 2,四至情况详见附图 3。

2、项目主要工程组成

本项目主要主体工程、辅助工程及环保工程见表 9。

表9 主体工程一览表

项目		新建内容
主体工程	生产车间	项目建筑物为新建的 1 栋 1 层砖墙铁棚结构厂房,总用地面积 10000m²
辅助工程 办公室		用于人员办公
储运工程	仓库	主要用于储存原料及成品
	运输	主要为公路运输
ハロナ和	供电	由市政供电,用电量 6.7 万度/年
公用工程	供水	由市政供水,用水量 558 吨/年

	废气	堆存、装卸过程、车辆运输、物料输送、配料、投料过程、搅拌机呼吸口等粉尘废气无组织排放;储罐顶部呼吸孔粉尘经"脉冲除尘装置+15m排气筒"高空排放
	生活污水	经三级化粪池预处理后经市政管道排至火炬区污水处理厂处理
环保工程	生活垃圾	交由环卫部门转移处理
	一般固废	废次品交由一般工业固废处理能力的单位处理;除尘器捕集的 粉尘收集后回用于生产
	危险废物	废机油及其包装物、含废机油抹布及手套,交有具有相关危险 废物经营许可证的单位处理

3、产品方案及产能设计说明

项目主要从事水泥制品制造,年产水泥砖60000平方米(约1200万块)。

4、项目生产原材料及年消耗量:

本项目生产所有原料均为外购,运营期各种原料年消耗量见表 10。

序号 物态 备注 原料名称 年用量 沙子 1 固态 200 吨 厂内堆放点设置顶 棚、边墙 石粉 固态 1500 吨 固态 1000吨 3 水泥 储罐 砖机生产过程中托 4 PC 砖机托板 固态 1200 张 起砖胚的辅助设备 产品用水 液态 432 吨 5 自来水

表 10 主要原辅材料消耗一览表

5、项目生产过程中使用的生产设备情况详见下表 11:

表 11 设备清单

序号	名 称	型号	数量	使用工序
1	搅拌机	JS-500	1台	搅拌
2	小型砂浆搅拌机	/	1台	搅拌
3	砖机	415	1台	压制成型
4	叉车	3.5t	1台	运输原料、产品
5	水泥罐	/	1个	储存水泥

6 玻璃	纤维冷却塔	10T	1台	冷却
------	-------	-----	----	----

注:本项目设备均不属于《产业结构调整指导目录(2019年本)》中的禁止和限制类范围。

6、能源能耗

该项目主要能耗如下表 12 所示:

表 12 项目能耗

能源	年用量	供给方式
电	6.7 万度/年	市政电网供给

7、劳动定员及工作时间

本项目劳动定员为 8 人,均不在厂内食宿。全年工作 300 天,每天一班,每班 8 小时,不涉及夜间生产。

8、给排水情况

给水系统

(1) 生活用水

项目共有员工 8 人,均不在厂内食宿。根据《广东省用水定额》(DB44T1461-2014),不在厂内食宿的员工生活用水定额取 0.04 t/人.d 计算,则项目员工生活用水量为 0.32t/d (96t/a)。

(2) 生产用水

①产品用水

项目加工过程中用水主要是混凝土搅拌过程用水,本项目混凝土搅拌过程中耗水量一般为原料的 15%-20%,按 20%计算,则耗水量为 1.8t/d, 432t/a。全部进入产品,无废水产生。

②洒水降尘用水

项目堆场区用于洒水降尘用水量约 0.5t/d,则用水量为 150t/a,该部分用水不会形成地表径流,均自然蒸发,不外排。

③养护用水

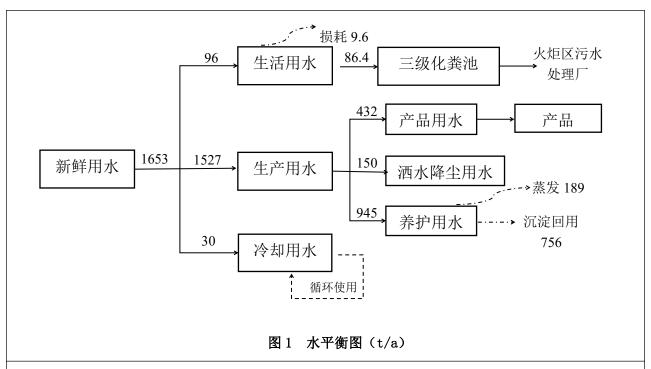
根据《广东省用水定额》(DB44/T1461-2014),浇洒道路和场地用水定额为 2.1L/m²。 根据建设单位提供的资料,本项目需进行场地洒水主要是场内道路、原料仓和成品区,主 要用于洒水养护、清洗抑尘,产品在自然晾干过程中,为防止晒裂、降低硬度需要定期洒 水养护,场内道路、原料仓和成品工作场区面积约为 3000m²,平均每天地面洒水 1 次,则 场地洒水养护用水量 6.3t/d,由于中山地区雨季雨水较多,雨水经雨水管收集后回用于场 地洒水,根据企业提供资料,洒水养护用水天数按 150 天计,即本项目养护用水约为 945t/a。

项目生产废水主要为洒水养护废水,蒸发量约为 20%,则废水产生量按 80%计算,废水产生量为 756t/a,经沉淀池(集水池)沉淀后回用于场内道路、原料仓和成品区场地洒水,不外排。

(3) 冷却用水

项目生产过程中,用于冷却设备的用水约为 0.1t/d(30t/a),冷却机用水为循环使用,除部分蒸发外不外排。

排水系统


(1) 生活污水

项目产生的生活污水排放系数取 0.9, 生活污水排放量 0.288t/d(86.4t/a)。目前,火炬区污水处理厂已建成投产,本项目所在区域属于火炬区污水处理厂集污范围内,且至项目所在地的截污管网已敷设完毕,该项目产生的生活污水经三级化粪池预处理后通过市政管道排入火炬区污水处理厂集中深度处理。

本项目给排水情况详见下表 1-5:

表 13 给排水情况表

	序号	项	目	使用量	排放量	备注
	1	生活	5用水	0.32t/d (96 t/a)	0.288t/d (86.4 t/a)	经三级化粪池预处理后通过市政管道 排入火炬区污水处理厂集中深度处理
		Д-	产品 用水	432 t/a	/	无废水产生
	2	产 用	洒水 降尘 用水	0.5t/d (150t/a)	/	自然蒸发,不外排
		养护 用水 6.3t/d (945t/a) /	20%蒸发散失,80%沉淀回用			
	3	冷去	用水	0.1t/a (30t/a)	/	循环使用,不外排

与本项目有关的原有污染情况及主要环境问题:

中山市耀成水泥制品厂年产 6 万平方米水泥砖新建项目位于中山市火炬开发区小引村 玉泉路 20 号旁之三,周围主要为工业厂房。其在运营过程中产生的"三废",对周围环境有 一定的影响。使该区域的颗粒物、噪声等污染有所增加。

项目的纳污河道为八公里河。近年来,随着经济的发展、人口的增加,排入该河道的工业废水和生活污水不断增加,使得该河道水质受到影响。为保护纳污河道水质,以该水道为纳污主体的厂企应做好污染物的达标排放工作,采取各种有效措施削减污染物的排放量,并积极配合有关部门开展水道的综合整治工作。

建设项目所在地自然环境简况

自然环境简况(地形、地貌、地质、气象、水文、植被、生物多样性等) 1、地理位置

中山市的位置于珠江三角洲南部,北纬 22°11′~22°46′,东经 113°09′~113°46′,北靠顺德,西接江门,东临珠江口,南接珠海,毗邻港澳。总面积 1800.14km²,2018 年末,中山市常住人口 331 万人,户籍人口 176.92 万人。

2、地形、地貌与地质

中山市地势中高周低,地貌层状结构明显,类型丰富多样,但以平原为主;地貌形态明显受北东、北西走向的地质构造控制。地层结构主要由第四纪以后的河流冲积物层不整合覆盖于燕山期发生褶皱凹陷地层之上构成。地层多以沙砾、砂质粘土、粘土和淤泥组成。地表多为现代河流冲积物覆盖,少见基岩露头。地貌上,属于珠江三角洲冲积平原。中山市的岩石主要是侵入岩和变质岩,其中侵入岩以中生代燕山期侵入岩为主,并加有部分加里东侵入岩;变质岩大致可分为区域变质岩、接触变质岩和动力变质岩。据钻探揭露,项目所在地主要见有填土、淤积成因的淤泥和泥炭质土,冲积成因的砂层及粘土、粉质粘土,残积成因的粘性土,下伏基岩为侵入成因的白垩系花岗岩(燕山期)。

3、气象与气候

中山市地处北回归线以南,濒临海洋,受热带季风影响,属南亚热带季风气候。其主要气候特点表现为:冬暖夏长、雨量充沛、阳光充足、季风明显及夏、秋季节常有热带风暴的影响。

- (1) 气温:中山市 1999~2018 年平均气温 23.0℃;极端最高气温 38.7℃,分别出现在 2005 年 7 月 18 日和 2005 年 7 月 19 日;极端最低温 1.9℃,出现在 2016 年 1 月 24 日。中山市月平均温度的变化范围在 14.6~29.1℃之间;其中七月平均温度最高,为 29.1℃;一月平均温度最低,为 14.6℃。
- (2)风向风速:中山市 1999~2018 年平均风速为 1.90m/s,近五年(2013~2017年)的平均风速为 1.80m/s。各月的平均风速变化范围在 1.6~2.2m/s 之间,六月份和七月份平均风速最大,为 2.2m/s,一月和十一月平均风速最小,为 1.6m/s。根据 1999~2018 年风向资料统计,中山地区主导风为 N 风,频率为 10.3%;次主导风向为 SE 风,频率为 8.9%。
- (3)降雨:中山地区降水具有雨量多、强度大、年际变化大、年内分配不均匀等特点。1999~2018年的平均年降水量为1943.2mm,年雨量最大为2888.2mm(2016年),最少为1441.4mm(2004年)。

4、水文特征

中山市位于珠江三角洲网河区下游,磨刀门、横门、洪奇沥 3 大口门经市境内出海,东北部是北江水系的洪奇沥水道,流经中山市境内长度 28km,北部是东海水道,流经长度 7km,下分支鸡鸦水道(全长 33km)和小榄水道(全长 31km),后又汇合成横门水道(全长 12km),西部为西江干流,流经中山市河长 59km,在磨刀门出海,还有桂洲水道、黄圃水道、黄沙沥等互相横贯沟通,形成了纵横交错的河网地带,围内共有主干河道、河涌支流及排水(洪)管道等 298 条。

该建设项目的纳污河道为八公里河,八公里河起始于小隐涌,终止范围为白庙,全长8公里。水体功能为农用,其水质现状为劣V,水质目标为V类,保护目标执行《地表水环境质量标准》(GB3838-2002)V类标准。

5、土壤

中山市的土壤主要有 5 个土类、10 个亚类、23 个土属和 36 个土种。5 个土种主要为: 赤土壤、水稻土、基水土、滨海盐渍沼泽土和滨海沙土。其中水稻土包括赤红壤水稻土和珠江三角洲沉积水稻土,水稻土又以耕层浓厚、供肥力强、结构良好的沉积水稻土为主; 赤红壤包括耕型和非耕型两类,耕型赤红壤已开垦种植旱作物,非耕型红壤未开垦耕作。

6、植被与生物多样性

中山市气候温暖,雨量充沛,具有良好的亚热带植被发育条件。所发育的地带性植被类型为热带季雨林型的常绿季雨林。中山市野生动物的主要活动场分布于五桂山低山丘陵和白水林高丘林地区,现存的经济动物主要有小灵猫、食蟹獴、豹猫、南狐、穿山甲、板齿鼠和各种鸟类、蛇类等;平原地区以爬行类、两栖、鸟类和鼠类为主;水生动物有鱼类、甲壳类和多贝类。本项目道路沿线主要为一些常见的小型动物,如各类昆虫、鼠、鸟类等,评价范围内未有国家及省级重点保护野生动物。

项目所在地功能区划:

本项目拟选址所在区域环境功能属性见下表:

表 14 建设项目所在地环境功能属性表

编号	项 目	内 容
1	水环境功能区	八公里河,水体功能为农用,V 类水质功能区,《地表水环境质量标准》(GB3838-2002)V级标准
2	环境空气质量功能区	根据《中山市环境空气质量功能区划》,项目属二类区域,执行《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单
3	声环境功能区	根据《中山市声环境功能区划方案》,项目属 3 类区域, 执行《声环境质量标准》(GB 3096-2008)中的 3 类标 准
4	是否属于农田基本保护区	否
5	是否属于风景保护区	否
6	是否属于地表水饮用水源保护区	否
7	是否属于水库库区	否
8	是否属于污水处理厂集水区	是(火炬区污水处理厂)

环境质量状况

建设项目所在地区域环境质量现状及主要环境问题(环境空气、地面水、地下水、声环境、生态环境等):

一、水环境质量现状

根据《中山市水功能区管理办法》[中府〔2008〕96 号]的规定,八公里河执行《地表水环境质量标准》(GB3838-2002)中的 V 类标准。

本项目位于火炬区污水处理厂纳污范围内,生活污水经三级化粪池预处理后经市政污水管道排入火炬区污水处理厂处理达标后排放到八公里河。根据《环境影响评价技术导则地表水环境》(HJ 2.3-2018),本项目属于三级 B 地面水环境影响评价条件的建设项目,需分析满足依托污水处理设施环境可行性分析的要求。

二、环境空气质量现状:

根据《中山市环境空气质量功能区划(2020修订)》,该建设项目所在区域为二类环境空气质量功能区,执行《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单。

1、空气质量达标区判定

根据《中山市 2018 年环境质量状况公报》,中山市城市二氧化硫、二氧化氮、可吸入颗粒物、细颗粒物的年均值及相应的日均值特定百分位数浓度值均达到《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单,一氧化碳日均值第 95 百分位数浓度值达到《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单,臭氧日最大 8 小时滑动平均值的第 90 百分位数浓度值未达到《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单,具体见下表,项目所在区域为不达标区,不达标因子为 O3。

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (μg/m³)	占标率(%)	达标情况
90	百分位数日平均质量浓度	12	150	8.0%	达标
SO_2	年平均质量浓度	6	60	10.0%	达标
NO	百分位数日平均质量浓度	85	80	106.3%	超标
NO ₂	年平均质量浓度	32	40	80.0%	达标
PM ₁₀	百分位数日平均质量浓度	90	150	60.0%	达标

表 15 区域空气质量现状评价表

	年平均质量浓度	43	70	61.4%	达标
DM.	百分位数日平均质量浓度	63	75	84.0%	达标
PM _{2.5}	年平均质量浓度	27	35	77.1%	达标
O ₃	百分位数 8h 平均质量浓度	197	160	123.1%	超标
СО	百分位数日平均质量浓度	1200	4000	30.0%	达标

2、基本污染物环境质量现状

本项目位于环境空气二类功能区, SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO、 O_3 执行《环境空气 质量标准》(GB3095-2012)中的二级标准及2018修改单。项目建设地位于火炬开发区, 临近的监测站点有民众站,根据《中山市 2018 年空气质量监测站点日均值数据公报》, 民众站的 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO、 O_3 的监测结果见下表。

表 16 基本污染物环境质量现状

点位		监测点坐标 /m		左 深丛松岩	评价标	现状浓度	最大浓度	超标频				
名 称	X	Y	物	年评价指标	准μg/m³	$(\mu g/m^3)$	占标率%	率%	情况			
			SO_2	24 小时平均第 98 百分位数	150	16	35.3	0	达标			
				年平均	60	7	11.7	0	达标			
			NO ₂	24 小时平均第 98 百分位数	80	79	152.5	1.9	达标			
				年平均	40	34	85	0	达标			
民	113° 29′	22° PM ₁₀				PM ₁₀	24 小时平均第 95 百分位数	150	104	124.7	0.5	达标
众 站	34.28	39.51		年平均	70	56	80	0	达标			
	"	"	PM _{2.5}	24 小时平均第 95 百分位数	75	50	126.7	0.8	达标			
				年平均	35	26	74.3	0	达标			
		O ₃	O ₃	8 小时平均第 90 百分位数	160	194	195.6	18	超标			
			СО	24 小时平均第 95 百分位数	4000	1200	47.5	0	达标			

由表可知,SO₂年平均及24小时平均第98百分位数浓度均达到《环境空气质量标准》 (GB3095-2012)中的二级标准及2018修改单;NO₂年平均及24小时平均第98百分位数浓 度均达到《环境空气质量标准》(GB3095-2012)中的二级标准及2018修改单; PM10年平 均及24小时平均第95百分位数浓度达到《环境空气质量标准》(GB3095-2012)中的二级 标准及2018修改单; PM2.5年平均及24小时平均第95百分位数浓度均达到《环境空气质量标 准》(GB3095-2012)中的二级标准及2018修改单; CO 24小时平均第95百分位数达到《环境空气质量标准》(GB3095-2012)中的二级标准及2018修改单; O₃日最大8小时平均第90百分位数浓度超出《环境空气质量标准》(GB3095-2012)中的二级标准及2018修改单。

三、声环境质量现状:

根据《声环境功能区划分技术规范》(GB/T15190-2014)及《中山市声环境功能区划方案》(中环〔2018〕87号),本项目所在地声功能区域为3类区,执行《声环境质量标准》(GB3096-2008)3类标准。本次评价在厂界共设4个噪声监测点,对建设项目周围声环境进行监测,根据中山市汉诚环保技术有限公司于2020年9月9日-2020年9月10日对中山市耀成水泥制品厂监测结果显示,项目厂界噪声监测值符合国家《声环境质量标准》(GB3096-2008)中的3类标准。噪声监测结果见表17。

噪声监测结果 单位: dB(A)								
监测时间		东面边界外	北面边界外	西面边界外	南面边界外			
TITE 1/21 # 1 1-1		1m	1m	1m	1m			
2020-09-09	昼间	56.8	58.4	57.2	57.7			
2020-09-09	夜间	46.5	48.7	46.9	47.3			
2020-09-10	昼间	57.5	58.7	57.4	56.8			
2020-09-10	夜间	47.1	48.5	46.4	47.6			
标准限值	昼间≤65;夜间≤55。							

表 17 环境噪声现状监测结果统计表 单位: dB(A)

从监测结果知,项目边界噪声均能够满足《声环境质量标准》(GB3096-2008)中的 3 类标准要求,表明项目声环境质量较好。

主要环境保护目标(列出名单及保护级别):

1、水环境保护目标:

水环境保护目标是在本项目建成后周围的河流水质不受明显的影响,项目无外排生产废水产生,产生的生活污水经三级化粪池预处理后,经市政管网排入污水处理厂进行处理,故项目对周边水环境影响不大,八公里河的水环境质量能符合《地表水环境质量标准》(GB3838-2002)中的 V 类标准。

2、环境空气保护目标:

大气环境保护目标是保护该区域的环境空气质量符合《环境空气质量标准》

(GB3095-2012) 中的二级标准及 2018 修改单。

主要是保护项目周边区域,使其满足《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单要求。项目大气环境评价范围是以项目为中心 5km 的矩形。

表18 项目大气评价范围敏感点

	쑈	坐标			环境功	相对厂	相对厂
名称			保护 对象	保护 内容	能区	址方位	界距离
	Е	N	/ / / / /	内谷	形位	址刀址	介距丙
开发区中心	113°28'50.31"	22°33'59.57"	 师生		二类区	西北	2200m
小学	113 20 30.31	22 33 37.37	///•		一人匹	E 40	2200111
第一幼儿园	113°28'49.21"	22°33'56.65"	师生		二类区	西北	2160m
倾五围	113°30'16.54"	22°34'04.40"	居民		二类区	东北	990m
广裕花园	113°29'42.57"	22°34'01.53"	居民		二类区	西北	900m
润和花园	113°29'12.97"	22°33'53.92"	居民		二类区	西北	1400m
滘仔	113°30'08.84"	22°33'48.32"	居民		二类区	东北	400m
二洲村	113°29'48.09"	22°33'42.70"	居民		二类区	西北	550m
臻华花园	113°30'26.75"	22°33'27.29"	居民		二类区	东面	550m
灰炉村	113°30'17.35"	22°33'22.39"	居民		二类区	东南	350m
裕龙君汇	113°29'26.94"	22°33'17.02"	居民	大气	二类区	西南	980m
卓雅外国语	113°29'14.11"	22°33'16.28"	师生	二级	二类区	西南	1500m
学校	113 29 14.11	22 33 10.26	//P.Z.		一天区	四用	1300111
海傍村	113°29'13.88"	22°33'02.92"	居民		二类区	西南	1500m
小隐村	113°29'17.84"	22°32'51.27"	居民		二类区	西南	1150m
黎村	113°31'03.88"	22°32'46.89"	居民		二类区	东南	1800m
松排围	113°31'01.34"	22°33'15.39"	居民		二类区	西南	1700m
东利村	113°31'13.47"	22°33'53.58"	居民		二类区	东北	1890m
中山中健肝	113°31'01.38"	22°34'12.28"	医院		一米区	东北	2060m
胆专科医院	113 31 01.38	22 34 12.28	医忧		二类区	水北	2000111
精密金属宿	113°29'59.67"	22°33'23.22"	员工		二类区	南面	127m
舍楼	113 27 37.07	<u> </u>			一大凸	田田	14/111

3、声环境保护目标:

项目夜间不生产,故声环境保护目标是确保该建设项目建成运营后其声环境质量符合《声环境质量标准》(GB3096-2008)中的 3 类标准,即昼间噪声≤65dB(A),评价范围为项目周边 200m。

评价适用标准

环境 质量 标准	(1) 《地表水环境质量标准》(GB3838-2002)中的 V 类标准; (2) 《环境空气质量标准》(GB3095-2012)中的二级标准及 2018 修改单; (3) 《声环境质量标准》(GB3096-2008)中的 3 类标准;
污染物排放标准	1、广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准; 2、《水泥工业大气污染物排放标准》(GB4915-2013)有组织排放限值标准; 3、《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值标准; 4、《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准; 5、《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及2013年修改单; 6、《危险废物贮存污染控制标准》(GB 18597-2001)及2013年修改清单。
总量 控制 指标	

建设项目工程分析

工艺流程简述(图示)

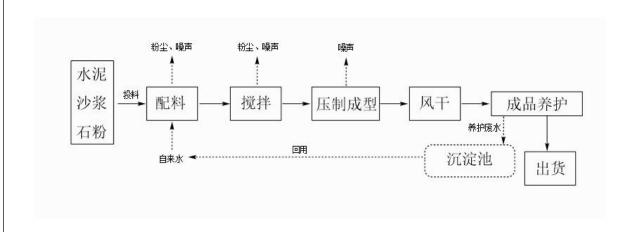


图 2 项目生产工艺流程图

工艺流程说明:

- (1) 投料:水泥是在密封槽罐车中泵入储罐,后通过专用管道送到搅拌机的搅拌仓内;沙子在小型搅拌机内加水混合搅拌后与量斗中的石粉混合,通过配套输送带进入强制式搅拌机的搅拌仓。
- (2)配料:原料按一定比例进行配料,此过程有粉尘废气产生,主要污染物为颗粒物。石粉、沙子等原料的投加以搅拌机配套的皮带输送方式完成,即通过皮带运输机运至混料系统搅拌。物料在输送、配料、投料过程进行围蔽处理。
- (3) 搅拌:原料送至搅拌机进行搅拌,搅拌过程中产生粉尘。原料进入搅拌机时,机器内部由于气压变化会有部分逸出,此过程有少量粉尘产生。
 - (4) 压制成型: 搅拌后的原料进入砖机压制成型。
 - (5) 风干: 自然风干后,将成品运送至仓库放置并定期养护,待出货。
- 注: ①项目生产过程为物料的物理混合, 无化学反应。用水为自来水, 均与原料混合, 无废水产生。
 - ②养护废水沉淀池(集水池)沉淀后回用于场内道路、原料仓和成品区场地洒水,不外排。

项目主要污染工序:

一、施工期主要污染工序:

施工期的环境影响主要为施工期间产生的噪声影响,仅在白天施工,夜晚未进行施工,不会出现扰民情况。

二、营运期主要污染工序:

本项目新建完成后营运期主要污染如下:

1、水体污染源:

本项目运营期间所产生的废水主要为员工生活污水。本项目共有员工 25 人,不在厂内食宿。根据《广东省用水定额》(DB44T1461-2014),员工生活用水量按每人每天用水 40L计,排污系数按 0.9 计,则本项目生活污水产生量为 0.288t/d(86.4t/a)。根据类比分析,生活污水主要污染因子及产生浓度分别为 COD_{Cr} 300mg/L、BOD₅ 150mg/L、氨氮 25mg/L、SS 150mg/L,经三级化粪池预处理后,排入市政污水管网。项目生活污水污染物产排情况见下表。

项目		$\mathrm{COD}_{\mathrm{Cr}}$	BOD ₅	SS	氨氮
生活污水 86.4t/a	产生浓度(mg/L)	300	150	150	25
	产生量(t/a)	0.026	0.013	0.013	0.002
	排放浓度(mg/L)	250	140	70	23
	年排放量(t/a)	0.022	0.012	0.006	0.002

表 19 员工生活污水及污染物产排情况一览表

2、大气污染源:

(1) 堆存、装卸过程产生的粉尘

项目沙子、石粉在堆场堆放及装卸过程中会有扬尘产生,主要污染物为颗粒物,参考《混凝土搅拌站营运期环境影响分析》(文/王君红),项目堆存、装卸过程起尘量按原料使用量 0.02‰进行计算。据业主提供资料,沙子、石粉的年使用量为 1700 吨,则项目堆场、装卸过程粉尘产生量为 0.034t/a,对堆场原料进行遮盖,并采取定时喷水措施来控制堆场扬尘,粉尘在项目区内可沉降约 70%左右,则堆存、装卸过程粉尘无组织排放量为 0.01t/a,排放速率为 0.005kg/h(按 2000h/a 计)。

(2) 车辆运输扬尘

项目营运期间,原料以及产品的运输主要为车辆运输,车辆运输过程中有扬尘产生,运输期间道路完全干燥情况下,按经验系数计算:

$$Q=0.123 \cdot (V/5) \cdot (W/6.8)^{0.85} \cdot (P/0.5)^{0.75}$$

式中: Q: 每辆汽车行驶扬尘量, kg/km • 辆;

V: 汽车速度, km/h:

W: 汽车重量, t;

P: 道路表面粉尘量, kg/m²;

本项目车辆在厂区行驶距离按 40 米计,平均每天发空车、载重各 2 次;空车重约 10 吨,重车重约 30 吨,以 5km/h 行驶,本项目道路起尘以 0.1kg/m² 计,则经过计算,项目运输车动力扬尘量为 0.0043t/a。根据本项目情况,厂区道路硬化且保持清洁,定期洒水,

经采取措施后可大大减少运输道路的扬尘,使扬尘降低 70%左右,汽车运输扬尘无组织排放量为 0.0013t/a。根据企业实际生产情况,项目运输车行驶时间为 100h/a,则汽车运输扬尘排放速率为 0.013kg/h。

(3) 投料及搅拌过程产生的粉尘

本项目水泥是在密封槽罐车中泵入储罐,后通过配套输送管道进入搅拌机;石粉、沙子等原料的提升以搅拌机配套的皮带输送方式完成,该过程中粉尘产生量较少,经自然沉降后,无组织排放。参考《逸散性工业粉尘控制技术》技术中"第二十二章、混凝土分批搅拌厂",砂、石粉逸散尘排放因子取 0.005kg/t 原料计,项目砂、石子年使用量为 1700t,则粉尘年产生量为 0.009t/a;根据《逸散性工业粉尘控制技术》中"装水泥、砂和粒料入搅拌机"的产排因子,水泥投料粉尘产生量按 0.02kg/t 原料计,项目水泥年使用量为 1000t,则粉尘年产生量为 0.02t/a,项目投料、搅拌粉尘总产生量为 0.029t/a。

项目建设单位拟采取的措施为:物料在输送、配料、投料过程进行围蔽处理,因粉尘自然沉降较快,主要产生于生产设备周围,散落范围较小,对周边环境影响较小。根据《未纳入排污许可管理行业适用的排污系数、物料衡算方法(试行)》(原环境保护部公告 2017年第81号)中"47锯材加工业"的系数,车间装除尘装备的情况下,重力沉降法的效率约为85%。水泥、砂、石粉等沉降率于木材相比较高,即更易沉降且有进行围蔽处理,故本项目该生产过程沉降率按80%计,则沉降量为0.0232t/a,沉降部分及时清理后作为固废处理,只有极少部分扩散到大气中,无组织扩散量为0.0058t/a,年有效工作时间1500h,排放速率为0.0037kg/h。综上所述,本项目经沉降处理后的粉尘以无组织排放的形式扩散稀释,排放浓度达到《水泥工业大气污染物排放标准》(GB4915-2013)表3中颗粒物无组织排放限值,对周边空气环境影响较小。

(4) 搅拌机呼吸逸出粉尘

本项目装水泥、石粉、沙子进入搅拌机时,搅拌机内部由于气压变化会有部分逸出,根据《逸散性工业粉尘控制技术》第 332 页表 22-1 中混凝土搅拌站排污系数为 0.02kg/t,搅拌机年装料有 2700 吨,按最大逸散值计算,废气在车间无组织排放,则搅拌机呼吸逸出粉尘排放量为 0.054t/a。根据企业提供生产情况信息,项目搅拌时间按 2000h/a 计,此过程粉尘的排放速率为 0.027kg/h。

(5) 储罐顶部呼吸孔粉尘

项目粉尘(水泥)为储罐储存,粉料先从密闭槽罐车泵入各自储罐,该过程储罐顶呼吸孔粉尘浓度较大,拟在储罐顶部配套脉冲除尘装置,本项目共有1个储罐,则需设置1

台脉冲除尘装置。粉尘经过脉冲除尘装置处理后经 15m 高排气筒排放,除尘装置收集的粉尘回用于生产。

根据《未纳入排污许可管理行业使用的排污系数、物料衡算方法(试行)》中的水泥制品制造业(含混凝土结构构件、其他水泥制品业)产排污系数表,工业粉尘物料输送储存工序的排放系数为 2.09 千克/吨-水泥。本项目水泥用量为 1000 吨/年,则储罐粉尘产生量共计 2.09t/a。根据企业提供资料,本项目除尘设备采用脉冲除尘器,拟设风机风量为 3000m³/h,除尘效率为 99.9%,根据企业实际生产情况,加料时间约 2000h/a,则储罐顶部呼吸孔粉尘年排放量 0.0021t/a,处理后粉尘排放浓度为 0.35mg/m³。排放速率为 0.0011kg/h,满足《水泥工业大气污染物排放标准》(GB4915-2013)颗粒物有组织排放限值≤20mg/m³的要求。

	污染源	污染物	产生量 t/a	产生浓度 mg/m³	排放量 t/a	排放浓度 mg/m³	排放速率 kg/h
	堆存、装卸过程 产生的粉尘	颗粒物	0.034	/	0.01	/	0.005
无	车辆运输扬尘		0.0043	/	0.0013	/	0.013
组织	投料及搅拌过 程产生的粉尘		0.029	/	0.0058	/	0.0037
	搅拌机呼吸逸 出粉尘		0.054	/	0.054	/	0.027
有 组 织	储罐顶部呼吸 孔粉尘		2.09	348.3	0.0021	0.35	0.0011

表20 项目废气产生情况及排放情况

3、噪声污染源:

- (1)项目生产设备在生产过程中产生的机械噪声,其噪声值约为70~100dB(A);
- (2) 项目在原材料及产品的运输过程中会产生一定的交通噪声。

4、固体废弃物:

项目产生的固体废弃物主要为生活垃圾、生产废料和危险固体废弃物。

- ①生活垃圾:项目产生的生活垃圾按 0.5kg/人·日计算,8 名员工日产生生活垃圾约 4kg,则年产生量为 1.2 吨(按 300 天/年计)。
 - ②生产过程中产生的废物,主要为废次品,属一般工业固体废物,产生量约 1.0 吨/年。
- ③生产过程中除尘器捕集的粉尘,属一般工业固体废物,产生量约为 2.088 吨/年,收集回用于生产。

- ④设备维护过程中产生的废机油及其包装物,产生量约 0.001 吨/年,属于危险废物。
- ⑤设备维护过程中产生的含废机油抹布及手套,产生量约为0.005吨/年。

表 21 危险废物汇总表

序 号	危险废 物名称	危险 废物 类别	危险废物 代码	产生 量 (吨 /年)	产生工 序及装置	形态	主要成分	有害成分	产废周期	危险特性	污染防 治措施	
1	废机油	HW49 其他 废物	900-249-08	0.001	生产设 备	固体	废矿物油	废矿物油	生产期间	毒性	交由具 有相关	
2	废机油 包装物	HW49 其他 废物	900-041-49	0.001	0.001	生产设 备	固体	慶矿物 油	废矿物 油	生产期间	毒性	有 危 发 劳 等 可 证 的 单 位 的 是 营 的 单 位 。
3	含废机油抹布及手套	HW49 其他 废物	900-041-49	0.005	生产设 备	固体	废矿物 油	废矿物 油	设备维护	毒性	处理	

项目主要污染物产生及预计排放情况

内容 类型	排放源	污染物	勿名称		处理前产生浓度及 产生量(单位)		排放浓度及排放量 (单位)	
水		СО	D_{Cr}	300mg/L	0.026t/a	250mg/L	0.022t/a	
污污	生活污水	ВС	D D ₅	150mg/L	0.013t/a	140mg/L	0.012t/a	
染	86.4 t/a	SS NH ₃ -N		150mg/L	0.013t/a	70mg/L	0.006t/a	
物				25mg/L	0.002t/a	23mg/L	0.002t/a	
	堆存、装卸 过程产生的 粉尘	无组织		0.03-	0.034t/a		0.01t/a	
大气	车辆运输扬		无组织	0.004	0.0043t/a		9t/a	
污染物	投料及搅拌 过程产生的 粉尘 搅拌机呼吸	颗粒物	无组织	0.029t/a		0.005t/a		
120	搅拌机呼吸 逸出粉尘		无组织	0.05	4t/a	0.054t/a		
	储罐顶部呼 吸孔粉尘		有组织	2.09t/a, 34	2.09t/a, 348.3mg/m ³		0.0021t/a, 0.35mg/m ³	
	员工生活	生活	垃圾	0.9 t/	at/a	交由环卫部门	门运走处理	
固	一般固废	废礼	欠品	1.0	t/a		交由一般工业固废处理能力的 单位处理	
体废	双回及	除尘器抗	#集的粉 E	2.08	8t/a	收集后回戶	用于生产	
物	危险废物		及其包装 勿	0.00	lt/a	交由具有相关危	险废物经营许	
			油抹布 F套	0.00	可证的单位处理		位处理	
噪声	生产设备在生	三产过程中	产生约8	0~100dB(A)的噪	声。			
其他								

主要生态影响

建设项目所在地不属于生态保护区,工程用地均为工业用地性质,无占用基本农田、水体等。本项目所在地厂房建设期间对周边生态环境影响较小。在正常情况下,该项目可能造成对生态环境影响的因素主要是生活污水、粉尘、生产噪声和固体废物等。但这些污染源只要经适当控制,均可达到相应的国家标准要求。总体而言,该项目建成后不会对周围生态环境产生明显影响。

环境影响分析

施工期环境影响简要分析:

项目施工期主要为生产厂房的建造及生产设备安装,工作时间均为昼间,对周围环境影响较小。

营运期环境影响分析:

①环境空气影响分析:

(1) 堆存、装卸过程产生的粉尘

项目沙子、石粉在堆场堆放及装卸过程中会有扬尘产生,主要污染物为颗粒物,项目运营过程对堆场原料进行遮盖,进行围蔽处理,并采取定时喷水措施来控制堆场扬尘,粉尘在项目区内可沉降约 70%左右,则堆存、装卸过程废气无组织颗粒物满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(2) 车辆运输扬尘

项目营运期间,车辆运输过程中产生扬尘,主要污染物为颗粒物。经保证厂区道路硬化且保持清洁,定期洒水等措施后,项目运输车行驶时产生的粉尘废气可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(3) 投料及搅拌过程产生的粉尘

本项目水泥是在密封槽罐车中泵入储罐,后通过配套输送管道进入搅拌机;石粉、沙子等原料的提升以搅拌机配套的皮带输送方式完成,该过程的粉尘产生量较少且主要产生于生产设备周围,散落范围较小,主要污染物为颗粒物,通过在输送、配料、投料过程进行围蔽处理及自然沉降,投料及搅拌过程中产生的少量粉尘,无组织排放浓度可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求,对周边环境影响较小。

(4) 搅拌机呼吸逸出粉尘

本项目装水泥、石粉、沙子进入搅拌机时,搅拌机内部由于气压变化会从呼吸口排出,产生少量的粉尘废气,经加强通风后,在车间无组织排放,此过程粉尘的排放浓度可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(5) 储罐顶部呼吸孔粉尘

项目原料中的水泥为储罐储存,建设单位拟在储罐顶部配套脉冲除尘装置。储罐顶部 呼吸孔粉尘经过脉冲除尘装置处理后经 15m 高排气筒排放,除尘装置收集的粉尘回用于生

产。满足《水泥工业大气污染物排放标准》(GB4915-2013)颗粒物有组织排放限值≤20mg/m³的要求。

故本项目外排粉尘对周边大气环境影响不大。

②水环境影响分析:

1)养护废水

项目生产废水主要为洒水养护废水,养护总用水量为945t/a,其中蒸发量约为20%,则废水产生量按80%计算,废水产生量为756t/a,经沉淀池(集水池)沉淀后回用于场内道路、原料仓和成品区场地洒水,不外排。

根据企业提供信息,项目该部分养护废水经沉淀过滤池、砂石分离器处理后作为配料用水回收循环利用,不外排。养护废水处理工艺详见下图:

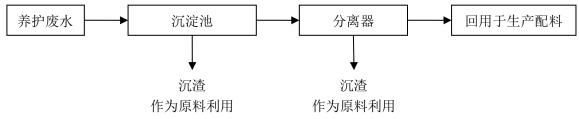


图 3 项目养护废水处理工艺流程图

因此,采取以上措施治理后,项目养护废水、沉渣均回用于生产,不外排,不会对周围地表水环境造成不良影响

项目员工生活污水主要污染物为 COD_{Cr}、BOD₅、SS、NH₃-N等。项目建设地在火炬 开发区污水处理厂的处理范围之内,项目生活污水主要污染因子及产生浓度分别为 COD_{Cr} 300mg/L、BOD₅ 150mg/L、氨氮 25mg/L、SS 200mg/L。建设单位拟采取生活污水经三级化 粪池预处理后达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准,后经 市政管网汇入火炬开发区污水处理厂进行深度处理,处理达标的生活污水对受纳水体影响 可降至最低。中山火炬开发区污水处理厂一期工程收集范围包括西片区(五星村、陵岗村、大岭村)、东南片区(宫花村、西桠村、神冲村、大环村)、中区(窈窕村、江尾村、张家边片)以及东区部分地方,总服务面积约 14.0km²,处理工艺为"A²/O 微曝氧化沟"工艺,该工艺采用微孔曝气代替转刷曝气,电耗更低,具有较好的脱氮除磷效果,处理效果稳定,出水水质可达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 B 标准。

本项目属于火炬开发区污水处理厂纳污范围,项目建设有完善的市政管网作配套。项目建设完成后生活污水排放总量为 0. 288t/d, 经项目三级化粪池预处理后, 排放生活污水水质指标可符合火炬开发区污水处理厂进水水质要求。火炬开发区污水处理厂现有污水处理能力为 5 万 t/d, 项目污水排放量仅占目前污水处理厂处理量的 0. 00058%。因此, 本项

目的生活污水水量对火炬开发区污水厂接纳量的影响很小,不会造成明显的负荷冲击。

综上所述,本项目运营期产生的生活污水经三级化粪池预处理达标后,其排水水质可以达到污水处理厂的进水水质标准,水量较小,不会对污水处理厂的正常运行造成不利影响。因此,本项目生活污水经三级化粪池处理达标后排入市政污水管网是可行的。

建设单位在落实上述防治措施下,项目对周围水环境产生的影响不大。。

③声环境影响分析:

本项目生产过程中生产设备、通风设备在运行时、原材料和成品的搬运过程中产生一定的生产噪声,项目工作时间为昼间,夜间不从事生产。本项目噪声污染主要来自搅拌机、砖机等机械设备。产噪源强均位于在厂房内,声源强度一般在80~100dB(A)。

建议防治措施如下:

- (1) 加强工艺操作规范,减少装配过程的碰撞,以减少噪声的排放;
- (2) 项目应选用低噪声的设备,做好设备维护保养工作,夜间不安排生产;
- (3) 在布局的时候应将噪声声级较高的声源设置在墙较厚的厂房内,利用厂房和厂内建筑物的阻隔作用及声波本身的衰减来减少对周围环境的影响;
- (4)注意日常机械设备的检修,避免异常噪声的产生,若出现异常噪声,须停止作业,对出现异常噪声的设备进行排查、维修;
- (5)企业应选用低噪声设备,合理布局车间、设备,设备安装应避免接触车间墙壁,较高噪声设备应安装减振垫、减振基座等。落实以上措施后,再经建筑隔声等作用,车间设备噪声贡献值可以降 15dB 以上。通风设备也要采取隔音、消声、减振等综合处理,通过安装减振垫,风口软接、消声器等来消除振动等产生的影响;
- (6)在原材料的搬运过程中,要轻拿轻放,避免大的突发噪声产生; 经过以上治理措施,项目产生的边界噪声可达到《工业企业厂界环境噪声排放标准》 (GB12348-2008)中3类标准。因此项目的噪声对周围声环境造成的影响不明显。

④固体废物影响分析:

- (1)生活垃圾年产生量约 1.2 吨,生活垃圾交由环卫部门运走处理。生活垃圾必须按照指定地点堆放在生活垃圾堆放点,每日由环卫部门清理运走,并对堆放点进行定期的清洁消毒,杀灭害虫,以净化周围卫生与环境。
 - (2) 一般工业固体废物主要为废次品,应交有一般工业固废处理能力的单位处理。
- (3) 危险废物主要有废机油及其包装物、含废机油抹布及手套,应交由具有相关危险废物经营许可证的单位处理。

对于危险废物管理要求如下:

- ①危险废物:统一收集、暂存、转移、处置危险废物的设施、场所,必须设置危险废物识别标志;
 - ②禁止企业随意倾倒、堆置危险废物;
- ③禁止将危险废物混入非危险废物中收集、暂存、转移、处置,收集、贮存转移危险 废物时,严格按照危险废物特性分类进行。放置混合收集、贮存、运输、转移性质不相容 且为经安全性处置的危险废物;
 - ④按照相关规范要求做到防渗、防漏等措施。

对于一般工业固废管理应采取以下措施:

- ①防扬散、防流失、防渗漏措施,且一般固废全部贮存于室内,不得露天堆放;
- ②贮存场所按《一般工业固体废物贮存、处置场污染控制标准》及环境保护部公告 2013 年第 36 号修改单中的规定建设;
 - ③不得擅自倾倒、堆放、丢弃、遗撒固体废物。
 - 经上述措施治理后,项目产生的固体废物对周边环境的影响不大。

序号	贮存场所 (设施)名 称	危险废物名 称	危险废物类 别	危险废物代 码	位置	贮存方 式	贮存 能力	贮存 周期
1	危废间	废机油	HW08 废矿 物油与含矿 物油废物	900-249-08	危 废 仓	桶装	0.01	12 个 月
2	危废间	废机油包装 物	HW49 其他 废物	900-041-49	危 废 仓	桶装	0.01	12 个 月
3	危废间	含废机油抹 布及手套	HW49 其他 废物	900-041-49	危 废 仓	桶装	0.005	12 个 月

表 22 贮存场所(设施)污染防治措施一览表

2、各环保措施的技术经济可行性

①废气治理工程的技术经济可行性

脉冲式除尘器工作原理:滤芯式系列组合式除尘器应用 PC 自动控制、柱塞射流反吹清洗系统,适用于各类干式粉尘的收集净化,粉尘通过滤芯收集之后,可以自动掉落至灰斗中,只需要简单打开灰斗就能够有效收集粉尘。通过风机有效的收集粉尘,保证车间粉尘扬起,保证车间的工作环境。同时脉冲式除尘器在国内已有大量的应用实例,处理技术已相当成熟,不存在技术上的难题。通过大量的工程实例可知,脉冲式除尘器对干式细小颗粒有较高的捕集效果,基本上能够保证 99%以上的去除效率,且能有效地回收粉尘,避免造成二次污染。

②废水治理工程的技术经济可行性

员工所产生的生活污水经三级化粪池预处理,达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,汇入火炬开发区污水处理厂进行深度处理,处理达标的生活污水对受纳水体影响可降至最低。中山火炬开发区污水处理厂总服务面积约14.0km²,处理工艺为"A²/O 微曝氧化沟"工艺。

本项目属于火炬开发区污水处理厂纳污范围,项目建设有完善的市政管网作配套。项目建设完成后生活污水排放总量为 0.288t/d,经项目三级化粪池预处理后,排放生活污水水质指标可符合火炬开发区污水处理厂进水水质要求。火炬开发区污水处理厂现有污水处理能力为 5 万 t/d,项目污水排放量仅占目前污水处理厂处理量的 0.00058%。因此,本项目的生活污水水量对火炬开发区污水厂接纳量的影响很小,不会造成明显的负荷冲击。

综上所述,本项目运营期产生的生活污水经三级化粪池预处理达标后,其排水水质可以达到污水处理厂的进水水质标准,水量较小,不会对污水处理厂的正常运行造成不利影响。因此,本项目生活污水经三级化粪池处理后经市政污水管网排入火炬区污水处理厂是可行的。

3、平面布局合理性分析

本项目为新建厂房,项目周边无居民区。项目的生产车间合理布局,高噪声设备应远离居民区,在落实降噪隔音措施后,经距离衰减能保证厂界满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。项目的水泥储罐拟配套15米高排气筒,在保证处理设施有效运行情况下,项目生产过程产生的粉尘废气,主要污染物为颗粒物,能满足《水泥工业大气污染物排放标准》(GB4915-2013)颗粒物有组织排放限值≤20mg/m³的要求,对周边环境影响较小。

4、环境管理与监测计划

①大气环境监测计划

根据《排污单位自行监测技术指南 总则》(HJ 819-2017)、《排污许可证申请与核发技术规范 总则》(HJ 942-2017),本项目污染源监测计划见表 23、表 24。

表 23	有组织废气监测计划表	
1X 23		

监测点位	监测指标	监测频次	执行排放标准							
C1	田皇本学材加	1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	《水泥工业大气污染物排放标准》(GB4915-2013)							
Gl	颗粒物	1 次/年	颗粒物有组织排放限值≤20mg/m³							

表 24 无组织废气监测计划表

监测点位	监测指标	监测频次	执行排放标准						
厂界	田皇本学材加	1 次/年	《水泥工业大气污染物排放标准》(GB4915-2013)						
) 37	颗粒物		颗粒物无组织排放限值						

②水环境监测计划

外排废水主要为员工生活污水,项目位于火炬区污水处理厂纳污范围内,外排生活污水排入市政管网,最终进入火炬区污水处理厂处理。因此项目不对外直接排放废水,不需进行地表水监测。

5、污染源清单

①废气污染清单

表 25 大气污染物有组织排放量核算表

序号	排放口编号 污染物		核算排放浓度(mg/m³)	核算排放速 率(kg/h)	核算年排放量(t/a)							
	一般排放口											
1	G1	颗粒物	0.35	0.0011	0.0021							
一般打	非放口合计		0.0021									
有组织排放量												
有组织	织排放总计		颗粒物	0.0021								

表 26 大气污染物无组织排放量核算表

序	产污	污染	主要污染	国家或地方污染物排放标准		年排放量					
号			防治措施	标准名称	浓度限值 (mg/m³)	(t/a)					
1	堆存、装卸 过程产生 的粉尘		对堆场原料进行 遮盖,并采取定 时喷水			0.007					
2	车辆运输 扬尘	颗粒 物	道路硬化且保持 清洁,定期洒水	, , , , , , , , , , , , , , , , , , ,		0.0009					
3	投料及搅 拌过程产 生的粉尘		设置防尘罩,加 强车间通风	(GB4915-2013)颗粒物无组织排放限 值	1.0	0.0014					
4	搅拌机呼 吸逸出粉 尘		加强车间通风			0.054					
	全厂无组织排放总计										
全	厂无组织排放	总计		颗粒物	0.0633						

表 27 大气污染物年排放量核算表

序号	污染物	年排放量(t/a)
1	颗粒物	0.0654

表 28 大气环境影响评价自查表

	工作内容	自查项目									
评价等级	评价等级	一级口		:	二级√	三级口					
与范围	评价范围	边长=50km		边长	5~50km□	边长=5 km √					
	SO2+NOx排放量	≥ 2000t/a□		500 ~ 2000t/a	a 🗆	<500 t/a √					
评价因子	评价因子		5染物()		包括二次 PM _{2.5} □						
	M M D 1	其他污	染物 (TSP)	不包	见括二次 PM _{2.5} √						
评价标准	评价标准	国家标准↓	地方	「标准 □	附录D□	其他标准 □					
	环境功能区	一类区口		1.1	类区√	一类区和二类区口					
	评价基准年		(2018)年								
现状评价	环境空气质量	长期例行监测	粉 捏	十答动门]发布的数据 √	现状补充监测□					
	现状调查数据来源	区别7911 蓝侧	1女人3/白	工目印	」/文/1μ B'J 女(3/h V	が小八个ドノも血火リロ					
	现状评价	达	标区□	·	不达标区↓						

污染源 调查	调查内容	本项目正常排 本项目非正常排 现有污染源	‡放源 √	拟替代的污染源□		其他在建、拟建项目 染源□		〔目污	区域》	亏染源□
	预测模型	AERMOD ADMS A		AUSTAL2000	EDMS	/AEDT	CALPUFF	_	模型	其他
	预测范围	 边长≥ 50l			 !长 5~5(Dkm □				km 🗆
大气环境 影响预测 与评价	预测因子		预测因子(包括二次 PM _{2.5} □					
	正常排放短期浓度 贡献值	C 本項目	最大占标率	≅≤100%□	C _{本项目} 最大占标率>100% □				6 🗆	
	正常排放年均浓度	一类区					C _{本項目} 最大标率>10% □			
	贡献值	二类区	C _{本項目} 最	30% □ c _{本項目} 最大标率> 30% □						
	非正常排放 1h 浓度 贡献值	非正常持续时	长() h	C _{非正常} 占	C _{非正常} 占标率≤100%□			C _{非正常} 占标率>100%□		
	保证率日平均浓度 和年平均浓度叠加	C _∰	☆ □		c _{囊加} 不达标					
	区域环境质量的整 体变化情况	k <	≤-20% □		k >-20% □					
环境监测	污染源监测	监测因子	-: (颗粒物	勿)			气监测 ✓ 气监测 ✓		无』	监测口
计划	环境质量监测	监测	因子: (/)		监	测点位	数 (/)		无』	监测 ✓
	环境影响		耳	「以接受 ✓	不可以接受 □					
评价结论	大气环境防护距离				无					
	污染源年排放量	SO ₂ : (/) t/a		(/) t/a	颗粒物: (0.0654) t/a					
注: "□"	为勾选项 , 填"、	<u>'";"()"</u>	为内容填2	与项						

②废水污染清单

表 29 废水类别、污染物及污染治理设施信息表

		废水类别	污染物 种类			污	染治理设	施		排放		
	序			排放去		污染	污染	污染	排放	口设		
	厅 号			向	排放规律	治理	治理	治理	口编	置是	排放口类型	
	5					设施	设施	设施	号	否符		
						编号	名称	工艺		合要		
Γ			COD _{Cr}	进入城市污水	间断排放,		三级化粪		1		√企业总排	
					排放期间流			三级化粪			□雨水排放	
	1		BOD ₅		量不稳定且	1				√是	□清净下水排放	
	1	污水	SS	处理厂	无规律,但	1	池	池		□否	□温排水排放	
			NH ₃ -N	处理)	不属于冲击		16	16			□车间或车间处	
					型排放						理设施排放口	

表 30 废水间接排放口基本情况表

		排放口地	地理坐标					受纳污水处理厂信息			
序号	排放 口编 号	经度	纬度	废水 排放 量/t/a	排放 去向	排放规律	间歇 排放 时段	名称	污染物 种类	国家或地方 污染物排放 标准浓度限 值/(mg/L)	
		113°3 0'00.3 5"	22°33 '29.32	86.4	进入	间断排放, 排放		火炬	COD_Cr	40	
1	1				城市	期间流量不稳	,	区污	BOD ₅	10	
	1				污水	定且无规律,但	/	水处	SS	10	
					处理	不属于冲击型		理厂	NH ₃ -N	5	

Т				l	Т			1	 排放			1			
						+ 1	 31 废水污	│ ニシケℷルℎℼ			 = WH :				
	Т	4F-54-12)=.)	†1. <i>tl-la</i> n		衣3						和今帝:	立仏北北	h ++ : \	,
序号	<u>-</u>	排放口 编号		杂物 类					衫初排	#放标准及其他按规定商定的排放协议 浓度限值/(mg/L)					-
	+	細写	+		名称 ————————————————————————————————————									5/L)	
		I —		DCr	广东	省地方	标准《水汽	亏染物拮	排放				500		
1		1	-	DD5	限值》	(DB44	-/26-2001)	第二时	段三				300		
			-	SS	级标准				400						
			NH	3-N				<u>> >4- 4</u>	n. s.	t. 43. 34	<u> </u>				
表 32 废水污染物排放信息表															
序号	-	排放口纸	扁号	污	染物种		排放浓度		g/L)		排放量/		- 1		牧量/(t/a)
					COD _{Cr}	:	-	250			0.0000	73			0.022
1		1			BOD ₅			150			0.0000				0.013
					SS			150			0.0000	43			0.013
					NH ₃ -N			25			0.0000	07			0.002
								COD	Cr						0.022
	全厂担	非放口合	+		BOD_5									0.013	
	1./ J		1		SS					0.013			0.013		
				NH3-N								0.002			
						表 33	地表水	环境景	影响设	平价自	查表				
工作	乍内名	\$							自查耳	页目					
	影	一大污	水污染影响型 √;水文要素影响型 □												
	类	型		-	, ,,,,,		7 14								
	水	- 1 饮用	水水源	原保护	☑ □;	饮用水	.取水口 🗆]; 涉水	步水的自然保护区 □;涉水的风景名胜区 □;重要湿地 □;						
	境	重点	保护与	5珍稀	水生生	物的栖	息地 □;	重要水	重要水生生物的自然产卵场及索饵场、越冬场和洄游通道口;				洄游通道□;		
影响	护	天然	天然渔场等渔业水体 □; 水产种质资源保护区□; 其他 □												
影响识别	材				レンニッカリ	見くの台 垂山	/			· · · · · · · · · · · · · · · · · · ·					
///	影途		: +II: 亡h		水污染量		<u>✓</u> 其他 □		t.	水文要素影响型 水温 □, 径流 □, 水域面积 □					
	(五)						共他 □ 5染物 □;	北柱力	_	(価 口;	1至701. □	」; 小璵	曲你 ∟	J	
	影	响					,		1 7	<温 □;	水位(7	水深)	□; 流过	恵 □;	流量 □;其
	因-	-f-	其他	_	II <u>H</u> . L	J; XX17	大口; 亩	自己クトア	~ 他	1 🗆					
		;	大 匠		水污染影	影响刑	۵/					水文要	表影响开	FiJ	
评化	介等组	及一级			-		· l;三级 B	√	+-	-级 □・	二级□				
	X		,				,, <u>D</u>	İ		<i></i> ,		<u> </u>			
	污污		□:	在建 [卆	排污证	———— 午可证	□: 环评			□:	 既有实测 □;
	源		其他		_, ,,,,,						- , ; 入河排				
现	受		□; 共他 □							1					
现状调查	响	-													
単	体:		.期 🗆	; 平水	ヾ期 □:	; 枯水	期 口,冰	封期〔		生态	环境保护	主管部门	"] □;	补充』	监测 □; 其他
	环						冬季 🗆								· · · · · ·
	质	量													

	区域										
	水资										
	源开	. 未开发 口;开发量 40%以下 口;开发量 40%以上 口 引									
	发利										
	用状										
	况										
	水文	调查时期	数据来源								
	情势	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □;	水行政主管部门	□,补充监测 □,其他 □							
	调查	春季 □; 夏季 □; 秋季 □; 冬季 □	八门 欧王 日 时 7								
	 补充	监测时期	监测因子	监测断面或点位							
	监测	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □		 监测断面或点位个数() 个							
	III. IX.1	春季 □; 夏季 □; 秋季 □; 冬季 □									
	评价 范围	 河流:长度()km;湖库、河口及近岸海域:	面积()km²								
	评价 因子	()									
	评价标准	河流、湖库、河口: I 类 □; II 类 □; IV类 □; V类 □ 近岸海域: 第一类 □; 第三类 □; 第四类 □ 规划年评价标准()									
	评价	丰水期 □, 平水期 □, 枯水期 □, 冰封期 □									
	时期	春季 □; 夏季 □; 秋季 □; 冬季 □									
现状评价	评价结论	底泥污染评价 □									
	预测	依托污水处理设施稳定达标排放评价 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	可和 () 1cm2								
	范围	1º1//// : 区区	цтж С / KIII ²								
影响预	预测 因子	()									
测	类型 2001	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □									
	预测 吐期	春季 □; 夏季 □; 秋季 □; 冬季 □									
	时期	设计水文条件 □									

		建设期 □;生	产运行期 🗆 ; 服务期活	場后 □									
	预测	正常工况 口;	E常工况 口: 非正常工况 口										
	情景	污染控制和减线	爰措施方案 □										
		区(流)域环境	竟质量改善目标要求情 景	₹ 🗆									
	预测	数值解 □:解	析解 □; 其他 □										
	方法	导则推荐模式	□: 其他 □										
	水污												
	染控												
	制和												
	水环												
	境影	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □											
	响减	区(流)域小>	区(流)域水环境质量改善目标 □;替代削减源 □										
	缓措												
	施有												
	效性												
	评价												
		排放口混合区外满足水环境管理要求 □											
		水环境功能区域	水环境功能区或水功能区、近岸海域环境功能区水质达标 □										
		满足水环境保护	满足水环境保护目标水域水环境质量要求 □										
	-LTT	水环境控制単元	元或断面水质达标 □										
	水环境影	满足重点水污染物排放总量控制指标要求,重点行业建设项目, 主要污染物排放满足等量或减量替代											
	現彰 - 响评	要求 □											
影响评		满足区(流)域水环境质量改善目标要求 □											
评价	价 	水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评价、生态流量符合性评											
וער		价 □											
		对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价 [
		满足生态保护组	T线、水环境质量底线、	资源利用上线和环	境准	入清单管理要求							
		污染物名	排放量/ (t/a)	排放浓度/ (mg/L)									
	污染	称	111/A(II)	III/AIW/AI \IIIgu/									
	源排	$\mathrm{COD}_{\mathrm{Cr}}$	0.022t/a	250									
	放量	BOD ₅	0.013t/a	150									
	核算	SS	0.013t/a	150									
		NH ₃ -N	0.002t/a	25									
	替代	污染源名	排污许可证编号	污染物名称	#	非放量/t/a)	 排放浓度/ (mg/L)						
	源排	称		打米物石协	1	业从重/ (/ 4)	THE DEVICE OF THE PROPERTY OF						
	放情	()	()	()		()							
	况												
	生态	 生态流 是. 一	В水期 () m³/s; 鱼	坐慜殖即 () m³	/s. ‡	t仙 () m³/c							
	流量		g水朔() m; 鱼类 g水期() m; 鱼类										
	确定	土心八位: 凡	(水朔 () III;	系/担/切(/ III; 9	代吧	() III							
	环保	污水处理设施	□;水文减缓设施 □;	生态流量保障设施	□;	区域削减 □; 作	依托其他工程措施 √;						
防	措施	其他 🗆											
防治措施	监测		环	境质量			污染源						
施施	出拠	监测方式	手动 口; 自喜	功 □; 无监测 ✓		手动口; 自	」动 □; 无监测 ✓						
	ן או און 	监测点位	()		()							

	监测因子	()		()
污染					
物排	√				
放清	,				
单					
评价结论	可以接受√;不可				
注: "□"	为勾选项,可打√;	"()"为内容填写项;	"备注"为其他	2补充内容。	

建设项目拟采取的防治措施及预期治理效果

内容类型	排放源 (编号)	污染物 名称	防治措施	预期治理效果	
水污染物	生活污水	COD _{Cr} BOD ₅ SS NH ₃ -N	经过三级化粪处理后,通 过市政管网排入火炬区 污水处理厂处理	《广东省水污染物排放 限值》(DB44/26-2001) 三级标准(第二时段)	
	堆存、装卸 过程产生的 粉尘		对堆场原料进行围蔽处 理,并采取定时喷水		
	车辆运输扬 尘	颗粒物	道路硬化且保持清洁,定 期洒水	满足《水泥工业大气污 染物排放标准》	
大气污	投料及搅拌 过程产生的 粉尘	本以不至 123	进行围蔽处理及自然沉 降	(GB4915-2013) 无组 织排放限值要求	
染 物	搅拌机呼吸 逸出粉尘		加强车间通风		
	储罐顶部呼 吸孔粉尘废 气	颗粒物	脉冲式除尘器+15 米排气 筒	满足《水泥工业大气污 染物排放标准》 (GB4915-2013)颗粒 物有组织排放限值 ≤20mg/m³	
噪声	生产、通风 设备、原材 料和成品的 搬运过程	噪声	采用减震、隔音、消声等 措施	《工业企业厂界环境噪 声排放标准》 (GB12348-2008)3类 标准	
	员工生活	生活垃圾	交由环卫部门转移处理		
固体	一般固废	废次品	交由有一般工业固废处 理能力的单位处理	可基本消除固体废弃物 对环境造成的影响	
废物	危险废物	废机油及其包 装物 含废机油抹布 及手套	交由具有相关危险废物 经营许可证的单位处理		
其他				ı	

生态保护措施及预期效果

- (1) 生活污水经三级化粪池处理后达标排放,减少对纳污河段的影响;
- (2) 生产废气治理达标排放,减少对工人身体健康和厂区周围大气环境的影响。
- (3) 妥善处置固体废物, 杜绝二次污染。

竣工环境保护验收及监测一览表

			污染物					
序号	要素	生产工艺	污染物因子(主要验 收监测项目)	核准排放量	环保设施	验收执行标准	上 监测点位	
		储罐顶部呼 吸孔粉尘废 气	颗粒物	/	经过脉冲除尘装置收集处 理后经 15m 排气筒高空 排放	满足《水泥工业大气污染物排放标准》(GB4915-2013)中颗粒物有组织排放限值 ≤20mg/m³要求	排气筒	
	废气	堆存、装卸 过程产生的 粉尘		/	对堆场原料进行围蔽处 理,并采取定时喷水			
1		车辆运输扬 尘	颗粒物	/	道路硬化且保持清洁,定 期洒水	满足《水泥工业大气污染物排放标 - 准》(GB4915-2013)中颗粒物无组织排放限值 要求	/	
		投料及搅拌 过程产生的 粉尘	* 贝朴亚 *7 /	/	进行围蔽处理及自然沉降			
		搅拌机呼吸 逸出粉尘		/	加强车间通风			
			$\mathrm{COD}_{\mathrm{Cr}}$	0.022t/a				
	क्ट्रि-र्देश	生活污水	BOD ₅	0.013t/a	经三级化粪池预处理后排	广东省《水污染物排放限值》(DB44/26-2001)		
2	废水	86.4 t/a	SS	0.013t/a	入市政管网,最终进入火 炬区污水处理厂	第二时段三级标准	/	
			NH ₃ -N	0.002t/a				
3	噪声	生产过程	Leq (A)	昼间 ≤65dB(A)	消声、减振、隔声等措施	《工业企业厂界环境噪声排放标准》 (GB12348-2008)3 类标准	厂界	

		生活垃圾	/		环卫部门定期清理	是否到位	/
		一般固废	废次品	1.0t/a	交由有一般工业固废处理 能力的单位处理	是否到位	/
4	固体 废物		除尘器捕集的粉尘	2.088t/a	收集后回用于生产	是否到位	/
		告 险田座	废机油及其包装物	0.01t/a	收集后交由具有相关危险 废物经营许可证的单位处	是否到位	
		危险固废	危险固废		理	走百 <u>判</u> 位	/

结论与建议

根据环境现状调查及分析评价,总体结论如下:

1、项目概况

中山市耀成水泥制品厂建于中山市火炬开发区小引村玉泉路 20 号旁之三,中心坐标为北纬 22°33′29.32″; 东经 113°30′00.35″。项目总投资 100 万元,环保投资额为 20 万元,用地面积约 10000m²,建筑面积为 10000m²,经营范围为加工、零售:水泥制件;零售:建筑材料。项目年产水泥砖 6 万平方米(约 1200 万块)。项目预计年生产 300 天,每天生产约 8 小时,不涉及夜间生产。

2、环境质量现状结论:

(1) 环境空气质量现状

根据《中山市 2018 年环境质量状况公报》,中山市城市二氧化硫、二氧化氮、可吸入颗粒物、细颗粒物的年均值及相应的日均值特定百分位数浓度值均达到环境空气质量标准(GB 3095-2012)二级标准,一氧化碳日均值第 95 百分位数浓度值达到环境空气质量标准(GB 3095-2012)二级标准,臭氧日最大 8 小时滑动平均值的第 90 百分位数浓度值未达到环境空气质量标准(GB 3095-2012)二级标准,降尘达到省推荐标准,项目所在区域为不达标区,不达标因子为 O₃。

民众站点: SO₂年平均及 24 小时平均第 98 百分位数浓度达到《环境空气质量标准》(GB3095-2012)二级标准; NO₂年平均浓度达到《环境空气质量标准》(GB3095-2012)二级标准; PM₁₀年平均及 24 小时平均第 95 百分位数浓度达到《环境空气质量标准》(GB3095-2012)二级标准; PM_{2.5}年平均及 24 小时平均第 95 百分位数浓度均达到《环境空气质量标准》(GB3095-2012)二级标准; CO 24 小时平均第 95 百分位数浓度均达到《环境空气质量标准》(GB3095-2012)二级标准; NO₂24 小时平均第 98 百分位数浓度达到《环境空气质量标准》(GB3095-2012)二级标准; O₃ 日最大 8 小时平均第 90 百分位数浓度超出《环境空气质量标准》(GB3095-2012)二级标准。

(2) 地表水环境质量现状

本项目位于火炬区污水处理厂纳污范围内,生活污水经三级化粪池处理后经市政污水管道排入火炬区污水处理厂处理达标后排放到八公里河。根据《环境影响评价技术导则 - 地表水环境》(HJ 2.3—2018)要求,项目地表水环境影响评价工作等级定为三级 B,分析可依托污水处理设施的可行性。

(3) 环境噪声质量现状

建设项目所在区域的声环境符合《声环境质量标准》(GB3096-2008)中的 3 类标准要求,项目周边声环境质量现状良好。

3、营运期环境影响评价结论:

(1) 环境空气分析结论

(1) 堆存、装卸过程产生的粉尘

项目沙子、石粉在堆场堆放及装卸过程中会有扬尘产生,主要污染物为颗粒物,项目运营过程对堆场原料进行围蔽处理,并采取定时喷水措施来控制堆场扬尘,粉尘在项目区内可沉降约70%左右,则堆存、装卸过程废气无组织颗粒物满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(2) 车辆运输扬尘

项目营运期间,车辆运输过程中产生扬尘,主要污染物为颗粒物。<mark>经保证厂区道路硬化且保持清洁,定期洒水等措施后</mark>,项目运输车行驶时产生的粉尘废气可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(3) 投料及搅拌过程产生的粉尘

本项目水泥是在密封槽罐车中泵入储罐,后通过配套输送管道进入搅拌机;石粉、沙子等原料的提升以搅拌机配套的皮带输送方式完成,该过程的粉尘产生量较少且主要产生于生产设备周围,散落范围较小,主要污染物为颗粒物,通过在输送、配料、投料过程进行围蔽处理及自然沉降,投料及搅拌过程中产生的少量粉尘,无组织排放浓度可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求,对周边环境影响较小。

(4) 搅拌机呼吸逸出粉尘

本项目装水泥、石粉、沙子进入搅拌机时,搅拌机内部由于气压变化会从呼吸口排出,产生少量的粉尘废气,经加强通风后,在车间无组织排放,此过程粉尘的排放浓度可满足《水泥工业大气污染物排放标准》(GB4915-2013)无组织排放限值要求。

(5) 储罐顶部呼吸孔粉尘

项目原料中的水泥为储罐储存,建设单位拟在储罐顶部配套脉冲除尘装置。储罐顶部 呼吸孔粉尘经过脉冲除尘装置处理后经 15m 高排气筒排放,除尘装置收集的粉尘回用于生产。满足《水泥工业大气污染物排放标准》(GB4915-2013)颗粒物有组织排放限值≤20mg/m³的要求。

(2) 水环境分析结论

该项目外排污水主要是生活污水,生活污水经三级化粪池处理后经市政污水管道排入火炬区污水处理厂处理达标后排放到北部排灌渠。对周边地表水环境影响较小。

(3) 声环境分析结论

该项目的噪声源主要为生产设备运行过程中产生的噪声和原材料、产品运输过程产生的交通噪声。若处理不好,对周围声环境造成一定的影响。为减少噪声对周围环境的影响,应选用低噪设备,对噪声较大的设备采取隔声、减振措施,尽量避免作息时间进行生产。

(4) 固体废物分析结论

生活垃圾交由环卫部门运走;一般工业固体废物中除尘器捕集的粉尘收集回用于生产及废次品收集后交由一般工业固废处理能力的单位处理;废机油及其包装物、含废机油抹布及手套交由具有相关危险废物经营许可证的单位处理;通过采取上述处理措施,项目产生的固体废物不会对周围环境产生明显的影响。

4、建议:

- (1) 严格执行"三同时"制度,在施工前报建环保部门,办理相关环保手续。
- (2) 做好外排水的治理达标排放工作,以减少其对周围河道水生态环境的影响。
- (3) 做好外排废气的治理达标排放工作。
- (4) 妥善处置固体废物, 杜绝二次污染。
- (5)建议单位应选用低噪声设备,同时对高强度噪声设备采用隔声、防震和消声等措施,以减少生产噪声对周围环境的影响。

5、总结论:

中山市耀成水泥制品厂年产6万平方米水泥砖新建项目位于中山市火炬开发区小引村玉泉路20号旁之三,该项目不在地表水饮用水源保护区、风景名胜区、农田保护区、生态保护区、堤外用地等区域保护范围内,选址合理。若项目能严格按照上述建议和环保主管部门的要求做好污染防治工作,对生产过程中所产生的"三废"作严格处理处置,确保达标排放,将污染物对周围环境的影响降到最低,则该项目的建设从环境保护的角度来看是可行的。

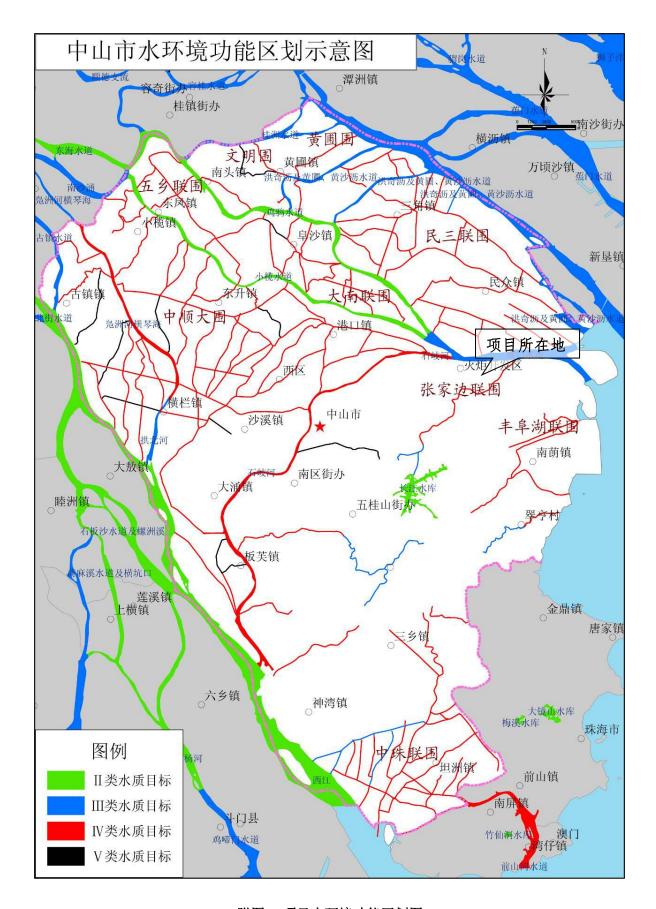
建设单位意见:					
	情况属实.	同意本评价意见	ī. <u>1</u>		
				签名	(公章)
			年	月	日
I and the second					

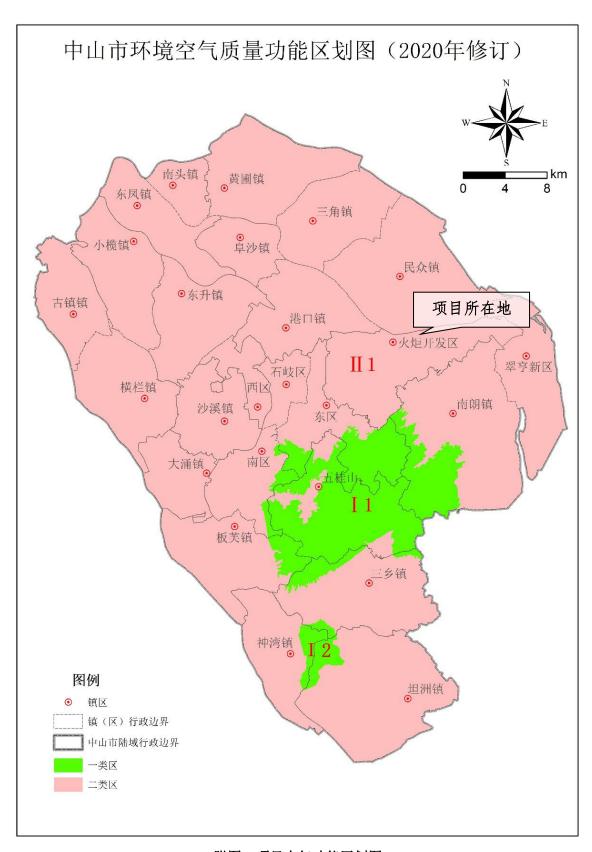
预审意见:	
公章	
经办人:	
年 月	日
下一级环境仍	保护行政主管部门审查意见:
下一级环境份	保护行政主管部门审查意见:
下一级环境化	保护行政主管部门审查意见:
下一级环境化	保护行政主管部门审查意见:
	R护行政主管部门审查意见:
公 章	R护行政主管部门审查意见:
	日

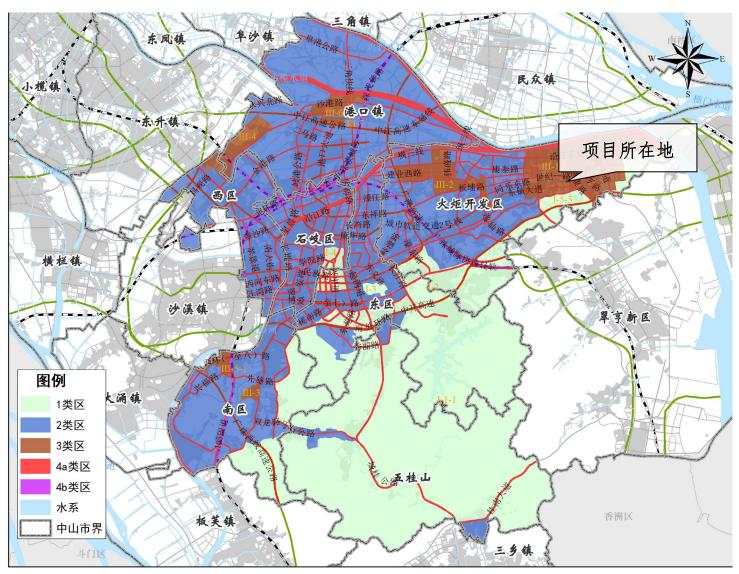
审批	意见:					
八	音					
公经办	子 人:					
	八. 月	日				

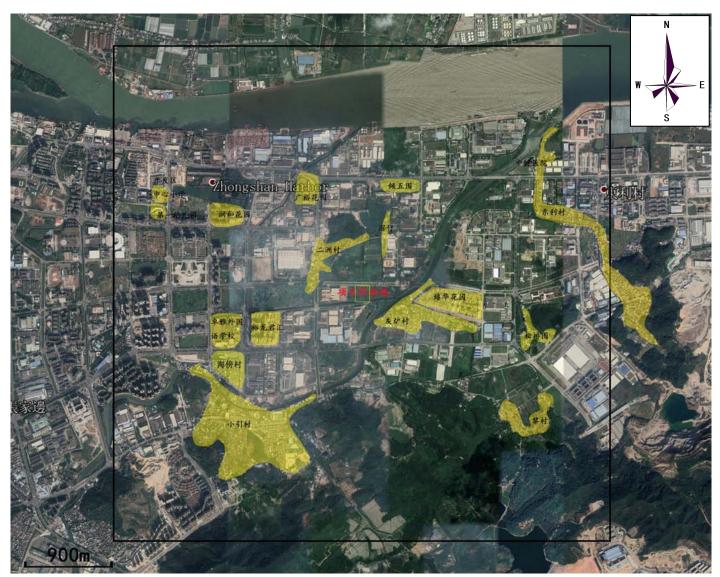


附图 1 项目地理位置图


附图 2 项目平面布置图


附图 3 建设项目四至图


附图 4 中山市规划一张图


附图 5 项目水环境功能区划图

附图6 项目大气功能区划图

附图7 项目声功能区划图

附图 8 项目大气评价范围

附图9 开发区报批前公示截图

委托书

中山市科思环境科技有限公司:

中山市耀成水泥制品厂年产6万平方米水泥砖新建项目准备在中山市火炬开发区小引村玉泉路 20 号旁之三内进行建设。根据国家《环境保护法》及《建设项目环境保护管理条例》的有关规定,现委托你公司对该项目进行环境影响评价,编制环境影响报告表。请给予大力支持。

委托单位:

代表:

年 月 日